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Abstract 

A formalism for deriving electrostatic potentials in 
crystals is presented, with emphasis on the choice of 
origin and the determination of the mean inner poten- 
tial. Conditions for applying the conventional origin 
chosen for isolated molecules are specified. The for- 
malism is applied to orthoboric acid, and maps of 
the electrostatic potentials are presented. Extinction 
appears to be a severe problem in mapping electro- 
static potentials, and its effects are investigated with 
a multipole expansion of the electron density. The 
effects of thermal motion are seen to be small at points 
far from the atomic core regions. 

Introduction 

It has been shown that electrostatic potentials in 
crystals can be derived from X-ray diffraction data 
(Stewart, 1979). This paper will present our applica- 
tion of this formalism. Even though electrostatic 
potentials are of major importance in the investigation 
of chemical dynamics, only a few groups work, or 
have worked, with the mapping of potentials from 
diffraction data (Moss & Coppens, 1980; Moss & 
Feil, 1981; Feil & Moss, 1983; Stewart, 1982; 
Swaminathan, Craven & McMullan, 1985). Bertaut 
(1952, 1977) has worked with the mapping of 
potentials in ionic crystals. 

The most frequently applied method for determin- 
ing electrostatic potentials from crystallographic data 
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(e.g. Swaminathan, Craven & McMullan, 1985) is 
based on a multipole expansion of the electron 
density. So far, this method has been used to derive 
the potential of a single molecule from the multipole 
functions and the expansion coefficients. 

In this paper we concentrate on the potential inside 
a crystal. The first section discusses the distinction 
between the electrostatic potential in a crystal, calcu- 
lated either by a Fourier sum in reciprocal space or 
by a superposition in direct space of the potentials 
from the units which build up the crystal. The charge 
density of such a unit - the building block for the 
crystal - could be the charge density inside a single 
unit cell or it could be the charge density from the 
atoms or molecules in the unit cell. 

The Fourier coefficient of the potential for the 
reciprocal-lattice vector of length zero is of special 
importance when discussing the two different ways 
of expressing the potential as this coefficient is the 
average value of the potential inside the crystal. It is 
known as the mean inner potential. Changing this 
Fourier coefficient corresponds to changing the origin 
for the potential inside the crystal. So in the first 
section we pay special attention to the question of 
how to determine the origin of the potential and how 
to calculate the mean inner potential. An important 
part of this section is found in Appendix A. 

In the second chapter we discuss some of the poten- 
tial maps and the chemical information which can be 
derived from X-ray diffraction data. Both maps of 
the potential in a crystal and the potential of a single 
molecule and their relations are discussed. 

The actual calculations deal only with the potential 
in a crystal. We use the algorithm of Stewart (1982) 
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where the total electrostatic potential in a crystal is 
determined from two summations: a Fourier summa- 
tion of the deformation potential in reciprocal space, 
and the superposition of the potentials from neutral 
atoms in direct space. The contribution from the 
individual atoms to the direct-lattice sum can be based 
on self-consistent field wavefunctions calculated with 
Gaussian-type basis functions, see Appendix B (van 
Duineveldt, 1971). The structure factors used to deter- 
mine the deformation potential are calculated using 
form factors derived from the same wavefunctions. 

As far as we know the formulae applied in this 
formalism for deriving the electrostatic potential have 
not been described previously in the literature. Hence 
Appendices B, C, containing the mathematical details, 
have been included. The formalism has been used to 
study the electrostatic potential in boric acid crystals, 
where the electron density has already been investi- 
gated (Gajhede, Larsen & Rettrup, 1986). 

Expression for the electrostatic potential in a crystal 

When mapping the electrostatic potential, ~ (x), from 
a given charge distribution, p(x), the zero of the 
potential can be chosen freely, since only differences 
in potential have physical meaning. On the other 
hand, it is normal to choose zero at infinity; consistent 
with the formula (Avery, Sommer-Larsen & 
Grodzicki, 1984): 

~ p ( x ) = I  d 3 x ' p ( x ' ) /  x - x  ' . (1) 

For a crystal this choice of zero means that we can 
separate o u t  the electrostatic part of the energy 
necessary to take an electron out of a crystal. This 
part is the mean inner potential. 

Another convenient origin is the one imposed by 
the condition 

]" d3x q~(x) =0,  (2) 
v~ 

corresponding to choosing the average electrostatic 
potential over the unit cell with volume V~ as zero 
(Stewart, 1982). 

The first origin will normally apply when the poten- 
tial in the crystal is constructed by a superposition 
of the potentials from the building blocks of the 
crystal. The potential of the building block is then 
connected to its charge density through (1). 

The second choice of origin naturally applies when 
the crystal potential is written as a Fourier series. It 
means that the Fourier coefficient for the reciprocal- 
lattice vector of length zero is set to zero. The connec- 
tion between the two ways of writing the potential in 
the crystal and the two choices of origin are discussed 
in detail below. An exact mathematical derivation is 
given in Appendix A. 

The charge density in an infinite crystal can be 
imagined to be constructed from units, with charge 
density po(x), centered at the Bravais-lattice nodes: 

p(x) = E po(x-R) ,  (3) 
R 

where R =  n ,a+  n2b+ n3c is a direct-lattice vector, a, 
b, c the direct-unit-cell vectors and n,, n2, n3 integers. 
These units can be groups of atoms, molecules or 
unit cells. 

In reciprocal space the charge density can be writ- 
ten as a Fourier series: 

p(x) = ~ pn exp ( -2zr iH.  x), (4) 
n 

where H = ha* + kb* + lc* is a reciprocal-lattice vec- 
tor, a*, b*, c* the reciprocal-unit-cell vectors, and h, 
k, l the Miller indicies. /gn is the Fourier coefficient 
of the charge density: 

pH=(1/Vc) ~d3x exp(27riH.x)po(x). (5) 

The unit from which the charge density in the 
crystal is built gives rise to an electrostatic potential 
~o(X). This is connected to the charge density po(x) 
through Poisson's equation: 

V2q~o(X) = -4rrpo(X). (6) 

The Fourier transform of the potential for a general 
vector H in reciprocal space can be written in the form 

¢n=(1/Vc)~d3xexp(27riH.x)¢o(X) .  (7) 

For H # 0  Poisson's equation gives the following 
identity: 

~OH = (PHI 7rH 2) (8) 

and for H = 0 we have 

q~n=o = (1/Vc) j" d3x q~o(X). (9) 

This integral is only well defined if po(x) fulfills the 
following three conditions: 

(i) po(x) is totally neutral; (10) 

(ii) po(x) has no dipole moment; (11) 

(iii) po(x) has no quadrupole moment. (12) 

In this case it is given by the expression 

I d3x q~o(X) = ( -2~ ' /3 )  I d3x r2po(x) 

= (-27r/3)(rg). (13) 

The derivation of these conditions is given in 
Appendix A. 

If the electrostatic potential for an infinite crystal 
was written similar to (3) or (4), then the Fourier 
coefficient for the reciprocal-lattice vector H = 0 had 
to be given in an unambiguous way by (9). The fact 
that ~0H=0 is not generally defined means that, in 
general, one can only talk about the electrostatic poten- 
tial in a finite crystal. 
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For a real finite crystal the electrostatic potential 
includes two terms: 

~o(x) = Y, ~0o(X - R) + ~0surrace(X). (14) 
Re crystal 

csurface(X) is the potential from a surface charge distri- 
bution. This is due to effects like reconstructions in 
the surface and adsorption of molecules and charges. 

If po(X) has a total charge or a total dipole moment, 
then the first term in (14) will give a potential in the 
interior of the crystal, which does not have the lattice 
periodicity and which depends on the crystal size and 
shape. If po(x) has a quadrupole moment only, then 
the potential in the interior will depend on the shape 
of the crystal, but not on the size (Redlack & Grindlay 
1975). In Appendix A we derive the electrostatic 
potential for such a crystal. In the case of a vanishing 
quadrupole moment tensor, the potential is indepen- 
dent of the size and shape of the crystal, and the 
electrostatic potential in the interior of a finite crystal 
will be given by: 

q~(x)= )-'. ¢PHexp(-2-a ' in .x)  
H # 0  

+ (-2~r/3 Vc) ~ dax ' r'2p0(x'). (15) 

The constant term q~8=o in (15) is evaluated in Appen- 
dix B, for the case where P0 describes the charge 
density from a free atom and in Appendix C for the 
case where P0 is the charge density of a unit cell. 

The periodic charge density deep inside the crystal 
can be constructed from any one of an infinite number 
of different building blocks. Some of these correspond 
to different ways of choosing the unit cell from the 
same periodic charge density. Other choices like the 
charge density from the atoms or molecules in the 
unit cell have already been mentioned. 

A change of building block for the crystal, e.g. the 
unit cell, will change the value of the constant term 
~0H= 0. This is an effect of the long range of the 
Coulomb potential. When the charge density of a 
finite crystal is given by a sum as in (14), over the 
same direct-lattice vectors but with different building 
blocks, then the charge density at the surfaces of the 
crystals built this way will differ by a double layer of 
charge. Harris (1975) and Euwema & Surrat (1975) 
show that, deep inside the crystal, the potential from 
this double layer is given exactly by the difference of 
the constant terms for the two units. 

As argued by Spackman & Stewart (1981) and 
Harris (1975), a building block from a periodic charge 
density can always be chosen, with all second-order 
moments equal to zero. In that case, the constant term 
in (15) is zero, so the choice of origin in (2) is 
equivalent to choosing a building block for the real 
crystal without any second order moments for the 
charge density. However, this kind of a building block 
does not give a very realistic description of the surface 
of a real crystal. On the other hand, the effect of the 

surface charge is an undetermined parameter which 
makes the comparison between electrostatic poten- 
tials from X-ray diffraction data and other 
experimental techniques difficult. Another source 
of experimental information is the potential measured 
by electron diffraction, especially the mean inner 
potential (Tull, 1951). Here the effect of the exchange 
potential must also be taken into account. Another 
experimental observation is the work function for the 
crystal. In this case the el.ectrostatic potential has to 
be combined with band-structure calculations in 
order to determine the Fermi energy (Sommer-Larsen 
& Avery, 1987). Still these observables depend 
strongly upon the surface effects, so again direct 
comparison is difficult. 

Mapping electrostatic potentials 

As suggested above, maps of the total electrostatic 
potential are mainly of interest in a solid-state phy- 
sical context. Other potential maps which can be 
derived from X-ray diffraction data can give informa- 
tion about molecular bonding and reactivity, 
molecular response to a crystal field and structural 
influence on crystal binding. 

The deformation potential, as the deformation elec- 
tron density, gives information on the bonding. The 
potential from an isolated molecule, as found in a 
crystal with negligible sharing of electrons between 
molecules, can be calculated from a multipole 
expansion of the electron density (Stewart, 1982). In 
order to see differences in chemical reactivity due to 
effects of surrounding atoms of a molecular entity, 
one can compare the electrostatic potentials of the 
entities, calculated from a multipole expansion of the 
electron density, in two different crystal structures of 
which the entity is a part. These potentials give infor- 
mation concerning molecular reactivity. 

The difference between the total electrostatic poten- 
tial in the crystal and the potential from a single 
molecule, as determined from the multipole 
expansion gives the crystal field imposed on the 
molecule. The response of the molecule to this exter- 
nal field can be seen if the potential of an isolated 
molecule, e.g. from an ab initio calculation, is com- 
pared with the potential from the multipole 
expansion. 

A problem is whether the errors in these difference 
maps can be reduced sufficiently to obtain reliable 
results. Hence in the following section, we present 
maps of total potentials and deformation potentials, 
with emphasis on the effects of extinction. 

In mapping the potentials, we choose the origin 
according to (2) because more features show up in 
these maps. According to Stewart (1982) the potential 
can be written as a superposition of neutral atomic 
electrostatic potentials and the deformation potential. 
The mean inner potential from the neutral atoms is 
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subtracted: 

~ (x )=  Y'. ~ a ( x - R - x a ) + ( 2 7 r / 3  V~) Y. (rE) 
R , a  a 

+ ~. (Apn/TrH2) exp(-27riU.x)  (16) 
n~o  

so the sum over a runs over all atoms in the unit cell, 
and (r 2) is defined from the charge density of the 
neutral atom as in (13). Apn is the Fourier coefficient 
of the deformation charge density. 

Formulae for evaluating the contribution to the 
electrostatic potential and the mean inner potential 
from a superposition of neutral atoms are given in 
Appendix B. Gaussian functions (van Duineveldt, 
1971) have been chosen for the expansion of the 
wavefunctions. The choice of basis functions is 
arbitrary, since the free-atom contribution to the 
structure factors is first subtracted and then added 
for convergence reasons. 

The calculated structure factors, used to derive the 
deformation potential were based on form factors 
from the same basis functions as those used in the 
calculation of the neutral-atom contribution to the 
electrostatic potential. Formulae for determining the 
form factor from a wavefunction based on a Gaussian 
expansion have been given by Stewart (1969). 

The summation in reciproca t space is performed 
with a modified slant Fourier program (van de 
Waal, 1975). 

mative since the range of contours around the 
molecule is much smaller than the range in Fig. 1. 

Fig. 3 shows a map of the deformation electrostatic 
potential, derived from the experimental data. The 
non-crystallographic threefold symmetry is now not 
exact, but is still apparent. This map shows the expec- 
ted negative regions in the parts of the molecule where 

I I 1 ANGSTROEH 

Maps of the electrostatic potential of boric acid 

The reciprocal-space contributions to all maps shown 
in Figs. 3-6 are all dynamic, i.e. are derived from 
observed structure factors from a thermally smeared 
electron density. Fig. 7 shows a static deformation 
potential calculated with structure factors from a 
multipole refinement. For Figs. 1, 2 and 4, the direct- 
space contribution is derived from a superposition of 
the potentials from static neutral atoms. 

The details of the data collection, data reduction 
and the positional and thermal parameters have been 
published previously (Gajhede, Larsen & Rettrup, 
1986). Seven reflections were then found to be 
severely affected by secondary extinction, and they 
were excluded from the Fourier transformation in the 
four electrostatic maps following. No averaging of 
non-crystallographic symmetry has been done, in 
order to see clearly the effects of experimental errors. 

Fig. 1 shows a map of the electrostatic potential 
from superpositioning of free atoms. The electron 
density used was derived from atomic quantum- 
chemical calculations using a Gaussian-type basis set: 
(13s, 7p) for the oxygen and boron atoms and (10s) 
for the hydrogen atoms (van Duineveldt, 1971). Fig. 2 
shows the same map but now with the mean inner 
potential (determined as described in Appendix B to 
be 0.52038 e~  -~) subtracted. This map is more infor- 

Fig. 1. Free-atom electrostatic potential derived from ab initio 
wavefunctions. Contour interval 0-05 e/~ -~. 
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Fig. 2. Free-atom electrostatic potential with mean inner potential 
removed. Contour interval 0.05 e,~, -1. Negative contours are 
represented by broken lines. 
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the deformation electron density is located, and posi- 
tive regions in the hydrogen-bond regions. The elec- 
trostatic potential in the H 1 hydrogen-bond region is 
significantly higher than in the other hydrogen-bond 
regions, which is most probably a consequence of the 
non-planarity of the boric acid molecule. 

Fig. 4 shows the total electrostatic potential of crys- 
talline boric acid in the plane of the molecules. No 

I I 1 ANGSTROEH 

Fig. 3. Deformation electrostatic potential from observed data. 
Contours as in Fig. 2. 

. . . .  ~ -  N/ ' i  ~ 

',) 

averaging has been performed, and the hydrogen 
bonds are not equivalent as expected. Two regions 
are negative and one is positive, again due to non- 
planarity. 

In order to investigate the effects of the secondary 
extinction, a map was made which included the reflec- 
tions previously found to be affected by extinction. 
This map is shown in Fig. 5. It shows that extinction 
is a severe problem in mapping electrostatic poten- 
tials, since all symmetry is lost. The effect is much 
more dramatic than in the deformation electron- 
density maps, where the extinction could hardly be 
seen (Kadziola, 1988). This is not surprising, since 
(8) gives high weights to the low-order reflections. 

The 002 reflection is the observation by far the most 
affected by extinction. It is observed as 40 (1) but 
calculated to be 90-2 in the free-atom model. From 
the electron-density study (Gajhede, Larsen & 
Rettrup, 1986), structure factors calculated with the 
multipole refinement program M O L L Y  (Hansen & 
Coppens, 1978) are available. The 002 reflection is 
calculated to be 92-4 in the multipole description, 
giving an error comparable to the standard deviation 
of the observations by rejecting the reflection from 
the Fourier summation. Fig. 6 shows a deformation 
potential map, generated by the Fourier summation 
of (Fc ,  m u l t i p o l e - F c ,  f r e e a t o m ) / ~ n  2. This map is almost 
identical to the one shown in Fig. 3, indicating that 
the rejection of the seven reflections affected by 
extinction did not introduce significant errors. 

The electron-density investigation showed that the 
static and dynamic electron densities are in qualitative 
agreement, but there was more electron density in the 
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Fig. 4. Total electrostatic potential as a sum of a deformation 
electrostatic potentials, derived from observed data, and a free- 
atom contribution. Contours as in Fig. 2. 

1 ANGSTROEM 

Fig. 5. Extinction-affected deformation electrostatic potential. 
Contours as in Fig. 2. 
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bonds of the static map than in the dynamic map. 
Hence similar results could be expected for the defor- 
mation electrostatic potential. 

Fig. 7 shows a map of the static deformation 
potential generated by the Fourier summation of 
( F c ,  m u l t i p o l e - -  Fc, freeatom)/1rtH 2 where the structure fac- 
tors were calculated with displacement parameters 
set to zero. This map shows qualitative and quantita- 
tive features similar to the map in Fig. 3, except in 

/ / / , "  - - . > ~ , ~ ¢ , \  \ \ \ \ ' , ' ,  \ \ " N  
/ / / " ~ \ \ \  \ Q  

/ / . , / - ' , , "  \ \ \ x \  
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\ 

I I l ANGSTROEM 

Fig. 6. Dynamic multipole-model deformation electrostatic poten- 
tial. Contours as in Fig. 2. 
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Fig. 7. Static multipole-mode.l deformation electrostatic potential. 
Contours as in Fig. 2. 

the atomic core regions (as expected), and it justifies 
the use of dynamic / iF in the generation of Fig. 4. 
The peaks around the O-atom positions are due to 
series-termination effects which become important 
when the displacement parameters are set to zero. 

The authors thank Drs J. Avery, R. F. Stewart and 
S. Larsen for valuable discussions. 

APPENDIX A 
The electrostatic potential in a finite crystal 

Following Guinier (1963), one can write the charge 
density in a real 'perfect' crystal as 

p ( x )  = p o ( X ) , [ a ( x ) Z ( x ) ]  

=~ d3x'po(X-X')O(x')Z(x'). (A.1) 

In this equation po(X) is the charge density of the 
building block for the crystal. 

The shape of the crystal is determined by the form 
function O (x): 

10 if x is inside the crystal 
12(x) = if x is outside the crystal. (A.2) 

#d3x,Q(x)  = V is the volume of the crystal. Z(x)  
defines the direct lattice 

Z(x) = ~  8 ( x - R )  = (1/Vc) E exp ( -2z r iH.  x). 
R H 

(A.3) 

R is a direct-lattice vector and H is a reciprocal-lattice 
vector. With these two forms of Z(x),  the charge 
density is given by 

p(x) = E  po(x-  R)O(R) = Y. po(x-  R) (A.4) 
R Re c rys ta l  

o r  

p(x) = (1/Vc) ~ exp ( -27r i l l .  x) 
H 

× ~ d3x ' po(x') exp (27rill. x')S2 ( x - x ' )  

= O(x) ~ exp ( - 2 t r i l l .  x)prl (A.5) 
H 

if x is not too near the surface of the crystal. Pn is 
the Fourier transform of the charge density as in (5) 
of the main text. 

Let ~o(X) denote the electrostatic potential from 
the building block for the crystal. The crystal's elec- 
trostatic potential can be written similar to (A.4) or 
(3.5)" 

~ ( x ) =  E ~po(X- R) (A.6) 
Re crystal  

o r  

~p(x) = (1/Vc) Y exp ( - 2 t r i l l .  x) 
H 

× # dax ' ~o(X') exp (27rill. x ' ) O ( x - x ' ) .  (A.7) 
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The electrostatic potential, not too near the surface, 
can be transformed, if one writes exp (27rill .  x') as 
(-1/47r2HZ)V 2 exp (2t r i l l .  x'), and combine this with 
Green's theorem and Poisson's equation to give 

q~(x)=x(x)+/- / (x)  ~ exp (-27riH.x)(pn/*rH 2) 
H~0 

(3.8) 

where 

X(x)=(1/Vc) I d3x' q~o(X-X')g2(x') 

+(1/V~) 2 (-1/47r2H2) 
H#0 

× I d3x' exp ( -27r i l l .  x') 

x { 2 V , o ( X - x ' ) .  VO(x ' )  

+ ~Oo(X - xt)V2J'~ (xt) }. (A.9) 

X(x) is the macroscopic potential in the crystal. It is 
the sum of the potential from a continuous distribu- 
tion of charge density (1 / V~)po(x) per volume element 
and the potential from a surface charge density. 
[VO(x) is a 8 function at the surface.] 

The last term in (A.9) gives a contribution to the 
potential deep inside the crystal if po(x) does not fulfil 
(10) and (11) of the main text. If po(x) has a net 
dipole moment but is totally neutral the contribution 
is just a constant. 

Thus for a crystal built from a unit without net 
charge or net dipole moment, the electrostatic poten- 
tial not too near the surface of the crystal can be 
written as 

~o(x) = (1/Vc) I dax' ¢o(X-X')O(x')  

+12(x) Y~ (pn/TrHE) exp(-27riH.x) .  
n~o (A.10) 

I f  one considers the electric field, rather than the 
potential, po may even have a dipole moment, and 
(A.10) marks the connection between the microscopic 
and macroscopic theories of dielectrics. 

The conditions (10)-(12) for the integral (9) in the 
main text to be uniquely defined can be shown by 
analyzing the combination of Green's theorem and 
Poisson's equation: 

I d3x q~o(X) = -(27r/3)  I daxrEpo(x) 
v v 

+(1 /3)  I dAn.xcpo(X) 
12 

+(1 /6 )  I d A  r2n. V~oo(X). (A.11) 
n 

The integral is over a volume V enclosed by the 
surface 12. dA is an area element on O and n is a 
unit vector normal to dA. The integral (9) in the main 
text is understood to be the limit of (A.11) when the 
volume V tends to infinity. The integral (A.11) is only 
independent of the size and shape of the volume if 
the conditions (10)-(12) are fulfilled. 

Similarly, by analyzing the function 
(1/Vc) Id3x ' (x-x ' )2po(x-x ' ) ,O(x ' ) ,  one can show 
that deep inside the crystal the first term in (A.10) 
gives the constant 

~0H=0 = ( 1 / V c )  I d3x' ½ Y~ Qo(x;x)/r'5)O(x') 
i,j 

- - (27" / ' /3  Vc) I d3Xt r t2po(Xt)  ( A . 1 2 )  

if Po fulfils (10) and (11). Q0 are the elements of the 
quadrupole tensor: 

Qu = I d3x (3xixj- r280)po(x). (A.13) 

As written in (14) we must add the contribution from 
a surface charge density to (A.8) or (A.10). 

Deep inside the crystal such a contribution can 
always be written as a constant plus the potential 
corresponding to a constant electric field. This can 
be shown by a Taylor expansion of the potential. 

In gefieral one can write the potential inside the 
crystal as 

~p(x) = ~Psurface(X) + (1/Vc) I d3x' ~o(X- x')12 (x') 

+I2(x)  E (Ps/ TrH2) exp ( -27ri l l .x)  
H#0 

(A.14) 

where ~surface(X) contains all surface effects including 
the second term in (A.9) if po(x) has a total charge 
or a total dipole moment. 

APPENDIX B 
Free-atom contribution to the electrostatic potential 

The electrostatic potential from static free atoms in 
a crystal (procrystal) is written as 

~pro(X)  = E ~ a ( x - R - x a ) ,  [ x - R - x a l < r m a x ,  
R,a 

(n.1) 

where 

~.(x) =I d3x'po~x')/Ix-x'l, (B.2) 

and pa is the free atomic spherical charge density. 
Only contributions from atoms within a specified 
distance rmax are taken into account. 

The charge density p, is written as 

pa(X) = ZaeS(x)-epa, e (x), (B.3) 

where Z~ is the atom number, e is the charge of the 
proton, and Pa,e is the electron density from atom a. 
The atomic electron density Pa, e is described as a sum 
of contributions from different shells: 

shells 
pa,e(X) = )-', OCC~p,(X), (B.4) 

v 

where occ, is the number of electrons occupying shell 
v. The electron density of shell v is described by the 
radial wavefunctions ¢~, which are expanded in 
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spherical normalized Gaussian-type functions 
(GTF's)" 

N~, 

O~ G T F  ~,,(x)= E ci~4(l~, i~)p,~.~,~(x), 
i=1 

where 

(B.5) 

GTF r I Pt,~ (x) = exp (--arE), (B.6) 

N~ is the number of GTF's in the basis set, lv is the 
angular momentum quantum number and A(I, a) is 
a normalization constant given by 

1x3xs-.(21+l) \ ] 
(B.7) 

That is to say 

1/ A( l, a) 2= ~ d3x r 2t exp ( - 2 ~ r  2) 

= I d3X GTF f \ P21,2,xtX). (B.8) 
From (B.5), the electron-density contribution from 

shell u can be written as 
N N 

p~(x) = 2 E ci~cj~4(lv, a,,,) 
i = l j = l  

xA(l , , ,a i  v GTF )p2,~.¢~,.+~,.)(x). (B.9) 

Similar to the expressions (B.3), (B.4) and (B.9), 
the potential can be written: 

~o~(x)=Z~e/r+~o~,e(x), (B.10) 
shells 

~,,,e(x) = Y. occv~(x),  (B.11) 

N, N 

q g v ( X ) =  E E c ivq~A( Iv ,  a , , , ) A ( t . ,  aj~) 
i = l j = l  

GTF z \ x ~2z~.(~,~+~;~)tx) (B.12) 
where 

GTF d 3X' ( r')21 ~o2;.~ (x)= ( - e )  I exp [ - a ( r ' )  2] 
Ix-x'l (B.13) 

Integrals in the form (B.13) are evaluated as 

f d3x (r') 2t exp [ - a ( r ' )  2] 
X -- X t 

= 47r{(1/r) oi dr'  (r') (2'+2) exp [ -a(r ' )  2] 

+ I dr' (r') (2z÷~) exp [ - a ( r ' )  2] (B.14) 
r 

by the recursion formulae: 
r 

( l / r )  I dr'  (r') ~2z+2~ exp [ - a ( r ' )  2] 
o 

= ( - 1 / 2 a ) r  2t exp ( - a r  2) 

+ [ ( 2 / +  1)/2ar] i dr'  (r') 2t exp [ - a ( r ' )  2] (B.15) 
o 

valid for I-> 0 and 

dr' (r') {2t+') exp [ - a ( r ' )  2] 
r 

= (1/2a)r 2t exp ( - a r  2) 
oo 

+(I /a )  ~ dr' (r') (2'-1) exp [ - a ( r ' )  2] 
r 

valid for l-> 1. The recursions are initiated by 

( l / r )  i dr '  exp [ - a ( r ' )  2] = (,/-~/2rV~-) erf (~/-~), 
o 

where 

(B.16) 

r 

err (r) - (2/x/-~) ~ dr' exp [ - ( r ' )  2] (B.18) 
o 

and 
oo 

j" dr' r' exp [--o~(r') 2] = (1/2a)  exp [--o~r2]. (B.19) 
r 

In the given definition the error function erf is avail- 
able as a Fortran routine in NAG for example. 

If the boundary conditions are chosen according 
to (2), one needs to calculate the terms (r 2) in (18). 
Similar to (B.3), (B.4) and (B.9) one obtains 

(r2a)=Sdaxr2p,,(x) 

= S d3x r2[Zae6(x)- epa.e(X)] 

= ( - e )  ~ d 3x r2pa, e(X), (B.20) 

shells 
~d3xr2p,,e(x)= Y. occ,~d3xr2pv(x), (B.21) 

v 

N,, N 

d3x rZP~(x) = Z E c,~c~4(l~, a,~)a(l~, c%) 
i = l j = l  

×I d3x 2 GTF r P2t.(~,.+~,.)(X). (B.22) 

With (B.6) and (B.8) the integrals in (B.22) can be 
rewritten as 

I d3x 2 G T F  r \ G T F  ~ \ 
r P21. , (ot . ,+ai , , ) l ,x  ) ~--- I d3x P2l~,+E,(a.,+oO~,)~,X) 

= {1/A2[Iv+ 1, (a,v+ aj~)/2]}. 

(B.23) 

APPENDIX C 

~n=o expressed by Fourier coefficients Pn in the case 
where Po is the charge density in the unit cell 

From (9) and (13), t ~ H =  0 can be evaluated as 

~H=O=(--27r/3Vc) Sd3xr2po(X). (C.1) 

In the case where the unit Po is given by the charge 
density in the unit cell, i.e. the restriction of the 
periodic charge density p to the unit cell, (C.1) can 
be written 

~PH=O=(--27r/3V~) ~ d3xr2p(x). (C.2) 
v, 

(B.17) 
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By inserting the Fourier expansion of p given by 
(4), transforming to fractional coordinates and 
assuming that the unit cell is electrically neutral, one 
obtains 

(-2¢r/3 Vc) I dax rEp(x) 
v~ 

1 1 1 
=(-217"/3) ~ Phktl  I ~(xa+yb+ze) 2 

H#0 0 0 0 

x exp [-2"n'i(hx + ky + h) dx dy dz, (C.3) 

where Phkl m PH=ha*+kb*+le*" Evaluation and introduc- 
tion of the unit-cell parameters gives the formula: 

(-2~'/3V~) I d3xrEp(x) 
Vc 

= 7  ~--~ph°° 7th ~h 2 + T  ~'~p°k° ik ~k ~ 
h#O k~O 

¢2 

1 
ab cos Y ~ Phko ~rhk +----5-- k#O 

+ E o oog+ E oo o/; 
h#0 k#0 

bc cos a ~ Pokl 7rkl +-----5--- leO 

+ E POkO POOl 
keO ik leO 

ca COSfl E E PhOl 
4 - - - - -7-  7rlh 

leOh#O 

+ E PoolS+ E Phoo~-~ • ((7.4) 
I~O h#O 

When the unit cell is chosen with a vanishing dipole 
moment according to (11), the formula reduces to 

(-27r/3Vc) I d 3 x r 2 p ( x )  
v, 

b 2 1 

3 ~ Poko 7rk 2 
k#O 

a 2 1 

= - - ~  ~ Pho0 7rh 2 
heO 

C 2 ~ 1 

- -~  tL#o Pool 7rl--5 

1 
ab cos Y ~ ~ Phko rrhk 

3 h¢O k#O 

bc cos ot ~ ~ POk, 1 
3 Irkl keO 1~o 

1 ca cos fl ~, ~ PhOl • 
3 wlh leO h~O 

(c.5) 

The condition (12) for the components of the quad- 
rupole tensor to be zero can be expressed in fractional 
coordinates as 

(a*.a*)(-27r/aVc) ~ d3xr2p(x) 
vc 

111 
= - 2 ¢r ~ ~ ~ x 2p (x) dx de dz 

0 o o  
(C.6) 

(a*. b*)(-2¢r/3 Vc) ~ d3xr2p(x) 
Vc 

111 
I f I xyp(x) dx dy dz 
o o o  

with equivalent expressions for the remaining tensor 
components. 

This finally reduces (C.5) and gives the equation 
for ~H=0 as 

~H=O = -  E ~0h00 (C.7) 
he0 

where ~hOO = q~H=h,*. Although (C.7) is equivalent to 
the expression for a crystal with cubic symmetry, the 
condition (12) that the charge density has a vanishing 
quadrupole-moment tensor is a weaker condition 
than requiring the charge density to have cubic 
symmetry. 
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